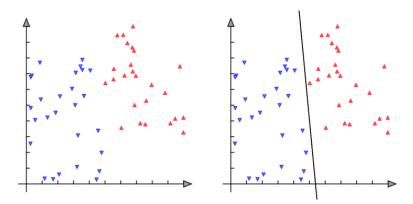
Maschinelles Lernen

Roland Richter, Robert Pollak Projektwoche Februar 2014

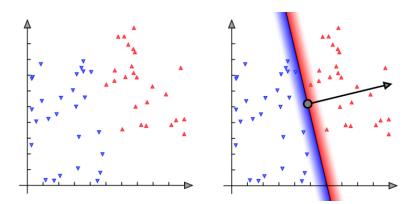


Lineare Klassifikation

Gegeben: zwei Mengen N ("negativ") und P ("positiv") in \mathbf{R}^d

Gesucht: eine Hyperebene, die N und P trennt

Was heißt das mathematisch?



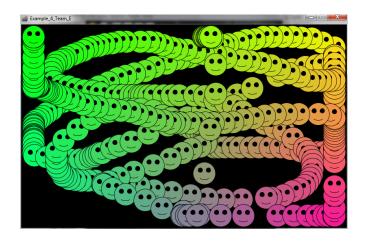
Lineare Klassifikation

Gegeben: zwei Mengen N ("negativ") und P ("positiv") in \mathbf{R}^d

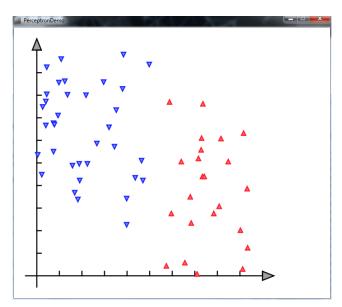
Gesucht: $w \in \mathbf{R}^d, b \in \mathbf{R}$ so, dass

 $\forall n \in N : w^T n + b < 0 \text{ und } \forall p \in P : w^T p + b > 0$

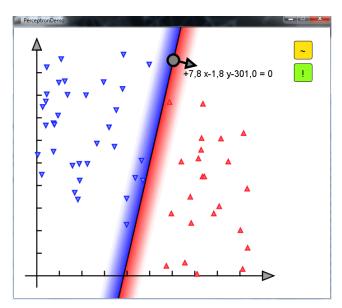
Perceptron-Algorithmus


- ▶ Wähle $\epsilon > 0$ beliebig, beginne mit beliebigem $w \in \mathbf{R}^d, b \in \mathbf{R}$
 - oder: $w = (1/|P|) \sum p (1/|N|) \sum n, b = ...$
- Solange Punkte fehlerhaft klassifiziert werden:
 - Falls $n \in \mathbb{N}$: $w^T n + b < 0$ oder $p \in \mathbb{P}$: $w^T p + b > 0$: \Longrightarrow Punkt liegt richtig, weiter
 - ▶ Falls $n \in N$, aber $\delta := (w^T n + b) \ge 0$:

$$w_{neu} \leftarrow w - \lambda n, b_{neu} \leftarrow b - \lambda$$
 mit $\lambda := (\delta + \epsilon)/(||n||^2 + 1)$

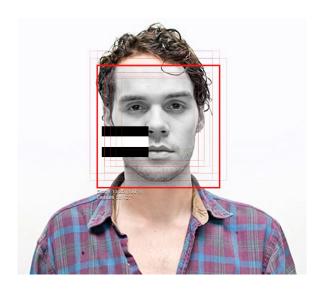

► Falls $p \in P$, aber $\delta := -(w^T p + b) \ge 0$:

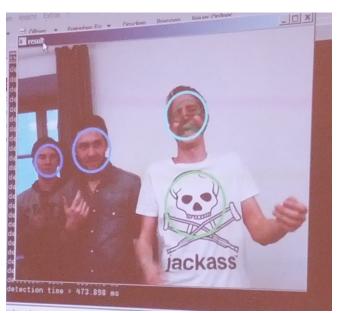
$$w_{\textit{neu}} \leftarrow w + \lambda p, b_{\textit{neu}} \leftarrow b + \lambda$$
 mit $\lambda := (\delta + \epsilon)/(||p||^2 + 1)$


Implementierung in Processing

Implementierung in Processing

Implementierung in Processing


Workshop Robotik


Workshop Robotik

Workshop Gesichtserkennung

Workshop Gesichtserkennung

Mehr ...

```
Prezi:
http://prezi.com/9m7-flk_mia2/maschinelles-lernen/#
Demo:
http://www.openprocessing.org/sketch/135826
Links:
http://www.flll.jku.at/node/191
http://www.flll.jku.at/node/159
```